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Abstract. The reconstruction of fundamental parameters in supersymmetric theories requires the evolution
to high scales, where the characteristic regularities in mechanisms of supersymmetry breaking become
manifest. We have studied a set of representative examples in this context: minimal supergravity and a
left–right symmetric extension; gauge mediated supersymmetry breaking; and superstring effective field
theories. Through the evolution of the parameters from the electroweak scale the regularities in different
scenarios at the high scales can be unravelled if precision analyses of the supersymmetric particle sector
at e+e− linear colliders are combined with analyses at the LHC.

1 Introduction

Extending the standard model to a supersymmetric theory
[1, 2] is an attractive step which has provided the qualita-
tive understanding of a diverse set of phenomena in par-
ticle physics. Supersymmetry stabilizes the gap between
the grand unification scale / Planck scale and the elec-
troweak scale [3]. It allows the unification to be achieved
of the three gauge couplings at a scale MU � 2 · 1016 GeV
in a straightforward way [4]. Radiative electroweak sym-
metry breaking relates to the high value of the top mass
[5]. Moreover, the cold dark-matter component in the uni-
verse can be identified with the lightest supersymmetric
particle [6]. Above all, local supersymmetry, requiring the
existence of massless spin 2 fields, provides a rationale for
gravity [7].

Supersymmetry is not an exact symmetry in nature.
Unraveling the breaking mechanism is therefore one of the
central issues with this new concept. A variety of mecha-
nisms have been proposed, based on rather different phys-
ical ideas. Among these schemes are supergravity theo-
ries [8] which have provided the framework for many phe-
nomenological analyses. The suppression of flavor-
changing neutral reactions is achieved in an automatic
form within gauge mediated supersymmetry breaking [9].
Supersymmetry is broken in these scenarios in a hidden
sector at high and intermediate scales, respectively, and
the breaking is mediated by gravity or gauge interactions
to the visible sector. The breaking, however, may not be
communicated by direct action from the hidden to the
visible sector. This is realized in anomaly mediated super-
symmetry breaking models [10] in which supersymmetric
particle masses are a consequence of the superconformal

anomaly. In gaugino meditated supersymmetry breaking
[11], supersymmetry is broken on a 3-brane separated from
the 3-brane of the visible sector, and the breaking is com-
municated by gauge and Higgs superfields propagating
through the 5-dimensional bulk. While in many models
of supersymmetry breaking the gaugino masses are as-
sumed to be universal at the unification scale, superstring
motivated models, in which the breaking is moduli dom-
inated, as opposed to dilaton dominated scenarios, give
rise to non-universal boundary conditions at the high scale
for the gauginos as well as the sfermion mass parameters
[12, 13]. They can be exploited to determine the parame-
ters of the string effective field theories.

In this report we elaborate on earlier investigations
of [14] in which elements of gravity and gauge mediated
supersymmetry breaking have been considered in realis-
tic experimental environments of the proton collider LHC
[15] and prospective TeV e+e− linear colliders [16, 17].
We extend these investigations in several directions in the
present report.

In supergravity inspired models we adopt a scenario
close to the Snowmass Point SPS#1 [18]. In a second step,
the previous analysis, based on the minimal supersym-
metric standard model, is extended to a left–right super-
symmetric SO(10) model [19]. The SO(10) symmetry is
assumed to be realized at a scale between the standard
SU(5) scale MU � 2 ·1016, derived from the unification of
the gauge couplings, and the Planck scale MP � 1019 GeV.
The right-handed neutrinos are assumed to be heavy, with
masses at intermediate scales between O(1010) GeV and
O(1015) GeV, so that the observed light neutrino masses
are generated by the see-saw mechanism in a natural way
[20]. A rough estimate of the intermediate scale follows
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from the evolution of the mass parameters to the low ex-
perimental scale if universality holds at the grand unifica-
tion scale.

In the gauge mediated symmetry breaking scenario,
the fundamental scale is expected to be in the range from
O(10 TeV) to O(1 EeV). We present an update and an ex-
tension of the earlier analysis. In particular, the effective
supersymmetry breaking scales, the messenger and super-
symmetric mass scales, can be reconstructed at the point
where the masses of the sparticles carrying the same quan-
tum numbers become identical, the characteristic regular-
ity of gauge mediated supersymmetry breaking.

The anomaly mediated as well as the gaugino mediated
SUSY breaking are technically equivalent to the mSUGRA
case and will therefore not be treated explicitly again.

Among the most exciting schemes rank superstring
induced scenarios (see e.g. [12, 13, 21] and references
therein). In this report a string effective field theory, based
on orbifold compactification of the heterotic string, will
be analyzed at the phenomenological level. In the scenario
considered, though dominated by the vacuum expectation
values of the dilaton field, supersymmetry breaking is also
affected by the moduli fields.

Such a mechanism gives rise to gaugino mass param-
eters with small but noticeable departure from universal-
ity, and non-universal sfermion mass parameters. From
these mass parameters the fundamental parameters of the
string effective field theory, such as the vacuum expecta-
tion values of the dilaton and the moduli fields, the mod-
uli / dilaton mixing angle as well as the modular weights
can be derived. In this way high-precision experiments can
provide access to elements which are directly induced by
superstrings [22].

Extrapolations over many orders of magnitude from
the electroweak scale to scales near the Planck scale re-
quire high-precision measurements at the laboratory scale
[23]. Such extrapolations can be performed in practice
as demonstrated in the analysis of the electroweak and
strong couplings at LEP and elsewhere [4]. The unifica-
tion of these couplings provides the most compelling ar-
gument, derived from experiment, in support of supersym-
metry. An initial set of precision data on supersymmetric
particles is expected from LHC experiments if favorable
cascade decays can be exploited to measure mass differ-
ences very precisely [15]. A globally comprehensive high-
precision analysis can only be performed at lepton collid-
ers [16, 17, 24–26]. They are expected to be realized in a
first phase up to an energy of about 1 TeV, and in a subse-
quent second phase up to about 5 TeV. e+e− linear collider
designs for the first phase are being worked out for JLC,
NLC and TESLA, while the second phase may be realized
in the CLIC technology. TESLA, in particular, can be op-
erated at very high luminosity. A large number of thresh-
old scans can therefore be performed which allows model
independent high-precision measurements of the masses of
supersymmetric particles. Chargino, neutralino and slep-
ton masses are expected to be measured with accuracies
at the per-mille level. Very heavy squarks and gluinos, on
the other hand, may be analyzed in detail at CLIC af-

ter their discovery and first analysis at LHC. However,
the accuracy is presumably reduced to the per-cent level
as a consequence of the decreasing production cross sec-
tions, the non-zero widths of the heavy particles and the
increasing energy smearing due to beam-strahlung.

Starting with observed numbers at the electroweak
scale, the bottom–up approach exhausts all experimental
information to the maximal extent possible in the empiri-
cal reconstruction of the underlying supersymmetric the-
ory at the high scale. Finally, the parameters of the fun-
damental high-scale theory will become accessible in this
way. This exploration of GUT and Planck scale physics by
combining high precision with high energy in experiments
at hadron and lepton colliders, is complemented by only a
very small number of other methods, nota bene proton de-
cay, likely neutrino physics, textures of mass matrices, and
cosmology. In all these individual approaches only scarce
information on the underlying physical structures at the
GUT / Planck scale can be extracted. Any of these meth-
ods should therefore be exploited in the maximal form
in order to shed light on the boundaries of the physics
area where gravity may affect properties and interactions
of particles observed in the laboratory at the electroweak
scale. In this way consequences of incorporating the fourth
of the fundamental forces into the particle system could
become accessible at laboratory experiments.

2 Gravity mediated SUSY breaking

2.1 Minimal supergravity – mSUGRA

Supersymmetry cannot be broken spontaneously in our
eigenworld without risking conflict with experimental re-
sults. The Ferrara–Girardello–Palumbo mass sum rule [27]
requires supersymmetric particle masses below the corre-
sponding standard model particle masses in this case – in
obvious disagreement with observations. The elegant con-
cept of spontaneous symmetry breaking, by non-pertur-
bative gluino condensation for instance, can be realized,
however, in a hidden sector which interacts with our eigen-
world only by gravity. Gravitational interactions generate
the soft supersymmetry breaking terms near the grand
unification scale / Planck scale. Not compulsory but sug-
gestive, the soft terms may be universal, i.e. the gaugino
mass parameters and the scalar mass parameters1. Be-
ing flavor blind, the suppression of flavor-changing neu-
tral processes can be realized in a natural way. Moreover,
for a heavy top mass mt � 174 GeV the breaking of the
electroweak symmetry SU(2)L × U(1)Y → U(1)EM can
be generated radiatively. While at the universality scale
all scalar masses squared are positive, the Higgs mass pa-
rameter M2

H2
turns negative at a scale of about 10 PeV.

This induces spontaneous electroweak symmetry breaking
at the electroweak scale where the sum M2

H2
+|µ|2 becomes

1 Universality may be broken by GUT-scale threshold cor-
rections, see e.g. [28]. The bottom–up approach should enable
us to explore this domain in a systematic way to the maximum
extent possible
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negative, leaving however the strong and electromagnetic
gauge symmetries SU(3)C and U(1)EM unbroken.

The minimal supergravity scenario mSUGRA is char-
acterized by the universal parameters of the gaugino mass
parameter M1/2, the scalar mass parameter M0, and the
trilinear coupling A0, complemented by the phase of µ, the
modulus |µ| determined by radiative symmetry breaking,
and the mixing angle tanβ in the Higgs sector.

The mass parameters M1/2, M0 and the trilinear cou-
pling A0 are defined to be universal at the grand unifica-
tion scale MU ; the unified gauge coupling is denoted by
αU at MU . For the sake of simplicity these parameters
are taken real at the GUT scale. They are related to the
low-energy parameters by the supersymmetric renormal-
ization group equations [29, 30], which to leading order
generate the evolution for

the gauge couplings : αi = ZiαU , (1)
gaugino mass parameters : Mi = ZiM1/2, (2)
scalar mass parameters :

M2
j̃

= M2
0 + cjM

2
1/2 +

2∑
β=1

c′
jβ∆M2

β , (3)

trilinear couplings : Ak = dkA0 + d′
kM1/2. (4)

The index i runs over the gauge groups i = SU(3),
SU(2), U(1). To leading order, the gauge couplings, and
the gaugino and scalar mass parameters of soft supersym-
metry breaking depend on the Z transporters

Zi =

[
1 + bi

αU

4π
log
(

MU

MZ

)2
]−1

, (5)

with b[SU3, SU2, U1] = −3, 1, 33/5; the scalar mass pa-
rameters depend also on the Yukawa couplings ht, hb, hτ

of the top quark, bottom quark and τ lepton.
The coefficients cj [j = Ll, El, Ql, Ul, Dl, H1,2; l =

1, 2, 3] for the slepton and squark doublets / singlets of
generation l, and for the two Higgs doublets are linear
combinations of the evolution coefficients Zi; the coeffi-
cients c′

jβ are of order unity. The shifts ∆M2
β are nearly

zero for the first two families of sfermions but they can be
rather large for the third family and for the Higgs mass
parameters, depending on the coefficients Zi, the univer-
sal parameters M2

0 , M1/2 and A0, and on the Yukawa
couplings ht, hb, hτ . The coefficients dk of the trilinear
couplings Ak [k = t, b, τ ] depend on the corresponding
Yukawa couplings and they are approximately unity for
the first two generations while being O(10−1) and smaller
if the Yukawa couplings are large; the coefficients d′

k, de-
pending on gauge and Yukawa couplings, are of order
unity. Beyond the approximate solutions shown explicitly,
the evolution equations have been solved numerically in
the present analysis to two-loop order [30] and threshold
effects have been incorporated at the low scale [31].

These parameters enter the mass matrices for the var-
ious particles. In the case of charginos χ̃+

m [m = 1, 2] the
2 × 2 mass matrix reads

Mχ̃+ =
(

M2
√

2mW cos β√
2mW sin β µ

)
, (6)

while the mass matrix for the neutralinos χ̃0
n [n = 1, ..., 4]

is a 4 × 4 matrix,

Mχ̃0 =




M1 0 −mZcβsW mZsβsW

0 M2 mZcβcW −mZsβcW

−mZcβsW mZcβcW 0 −µ
mZsβsW −mZsβcW −µ 0


 .

(7)
Here, sβ = sinβ, cβ = cos β and sW, cW are the sine and
cosine of the electroweak mixing angle θW.

Exploiting all the information available from a linear
collider, both mass matrices can be reconstructed even in
the case of complex parameters [32]. For large values, tanβ
needs supplementary analyses in the Higgs sector [33].

Assuming that the sfermion generations mix only
weakly, the mass matrices of the third generation sfer-
mions can be written as

M2
f̃

=

(
m2

f̃L
mfaf

mfaf m2
f̃R

)
, (8)

with

m2
f̃L

= M2
F̃L

+ (T 3
f − ef sin2 θW) cos 2βm2

Z + m2
f , (9)

m2
f̃R

= M2
F̃R

+ ef sin2 θW cos 2βm2
Z + m2

f , (10)

at ≡ At − µ cot β, ab ≡ Ab − µ tanβ,

aτ ≡ Aτ − µ tanβ, (11)

where ef and T 3
f are the electric charge and the third

component of the weak isospin of the sfermion f̃ ; MF̃L
=

MQ̃ for f̃L = t̃L, b̃L, MF̃ = ML̃ for f̃L = τ̃L, ν̃τ ; MF̃R
=

MŨ , MD̃, MẼ for f̃R = t̃R, b̃R, τ̃R, respectively; mf is the
mass of the corresponding fermion. Also in this case it has
been shown that the mass matrix can be reconstructed
[34, 35]. The mass matrices for the first two generation
sfermions have the same structure. However, due to the
small fermion masses the mixing between the L/R sfer-
mions can be neglected in general.

In the fits for the parameters we have used the com-
plete one-loop mass matrices as given in [31]. For the Higgs
bosons also the two-loop contributions [36] are included.

The mSUGRA point that we have analyzed in detail
was chosen close to the Snowmass Point SPS#1 [18], ex-
cept for the scalar mass parameter M0 which was taken
slightly larger for merely illustrative purpose: M1/2 =
250 GeV, M0 = 200 GeV, A0 = −100 GeV, tanβ = 10
and sign(µ) = +. The initial “experimental” values have
been generated by evolving the universal parameters down
to the electroweak scale according to standard procedures
[31, 37].

The parameters chosen are compatible with the present
results of low-energy experiments which they affect by
virtual contributions, and they are also compatible with
dark-matter estimates [38]: BR(b → sγ) = 2.7 · 10−4,
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Table 1. Representative experimental mass errors used in the
fits to the mass spectra; with the exception of the gluino mass,
all the other parameters are based on LC measurements

Particle M (GeV) ∆M (GeV) Particle M (GeV) ∆M (GeV)

h0 113.33 0.05 ν̃eL 256.79 0.11
H0 436.1 1.5 ẽL 269.1 0.3
A0 435.5 1.5 ẽR 224.82 0.15
H± 443.3 1.5 ν̃τL 255.63 0.95
χ̃±

1 183.05 0.15 τ̃1 217.7 1.0
χ̃±

2 383.3 0.3 τ̃2 271.5 0.9
χ̃0

1 97.9 0.2 ũL 589 10
χ̃0

2 184.6 0.3 ũR 572 10
χ̃0

3 365.5 0.3 d̃R 572 10
χ̃0

4 383.0 0.7 t̃1 412 10
g̃ 598 10 t̃2 600 10

∆[g − 2]µ = 17 · 10−10, ∆ρ = 38 · 10−5 and Ωh2 = 0.4. We
have used the formulas given in [39] for the computation
of b → sγ, those given in [40] for ∆[g − 2]µ, and those
given in [41] for ∆ρ; Ωh2 has been calculated using the
program of [42].

The five basic parameters define the experimental ob-
servables, including supersymmetric particle masses and
production cross sections. They are endowed with errors
as expected for threshold scans as well as measurements
in the continuum at e+e− linear colliders (LC). Major
parts of the LC analysis can be performed for energies
below 1 TeV; some of the squarks require energies above
1 TeV. Estimates are based on integrated LC luminosities
of 1 ab−1.

The errors given in [25] are scaled in proportion to
the masses of the spectrum. Typical examples are shown
in Table 1. The LC errors on the squark masses, see e.g.
[43], are set to an average value of 10 GeV [similar errors
may also be obtained if the precisely measured mass differ-
ences at the LHC are combined with high-precision mea-
surements of the low-lying states at the LC]; varying this
error within a factor two does not change the conclusions
significantly since the measurement of the cross sections
provides the maximal sensitivity in this sector. For the
cross sections we use purely statistical errors, while as-
suming a (conservative) reconstruction efficiency of 20%.
In addition the mass errors on the lightest gauginos were
inflated with respect to earlier analyses to be conserva-
tive in advance of detailed experimental analyses of mod-
els with higher values of tanβ. [Parameter combinations
from the fits to the spectrum and the cross sections which
lead to charge and/or color breaking minima [44], are not
accepted.]

These observables are interpreted as the experimental
input values for the evolution of the mass parameters in
the bottom–up approach to the grand unification scale.

2.1.1 Gauge couplings

The presumably strongest support, though indirect, for
supersymmetry is related to the tremendous success of

Table 2. Expected errors on MU and αU for the mSUGRA
reference point, derived for the present level of accuracy and
compared with GigaZ

Now GigaZ

MU (2.00 ± 0.06) · 1016GeV (2.000 ± 0.016) · 1016GeV
α−1

U 24.364 ± 0.015 24.361 ± 0.007

this theory in predicting the unification of the gauge cou-
plings [4]. The precision, being at the per-cent level, is
surprisingly high after extrapolations over fourteen orders
of magnitude in the energy from the electroweak scale to
the unification scale MU . Conversely, the electroweak mix-
ing angle has been predicted in this approach at the per-
mille level. The evolution of the gauge couplings from low
energy to the GUT scale MU is carried out to two-loop
accuracy. The gauge couplings g1, g2, g3 and the Yukawa
couplings are calculated in the DR scheme by adopting the
shifts given in [31]. These parameters are evolved to MU

using two-loop RGEs [30]. At two-loop order the gauge
couplings do not meet exactly [45, 46], the differences ow-
ing to threshold effects at the unification scale MU which
leave us with an ambiguity in the definition of MU . In
this report we define MU as the scale, ad libitum, where
g1 = g2 in the RGE evolution. The non-zero difference
g1−g3 at this scale is then attributed to threshold effects of
particles with masses of order MU . The quantitative evolu-
tion implies important constraints on the particle content
at MU [47–51].

Based on the set of low-energy gauge and Yukawa
parameters {α(mZ), sin2 θW, αs(mZ), Yt(mZ), Yb(mZ),
Yτ (mZ)} the evolution of the inverse couplings α−1

i [i =
U(1), SU(2), SU(3)] is depicted in Fig. 1a. The evolu-
tion is performed for the mSUGRA reference point de-
fined above. Unlike earlier analyses, the low-energy thresh-
olds of supersymmetric particles can be calculated in this
framework exactly without reference to effective SUSY
scales. The broken error ellipse in Fig. 1b, derived for
[MU , αU ] by requiring g1 = g2, corresponds to the present
experimental accuracy of the gauge couplings [52]: ∆{α−1

(mZ), sin2 θW, αs(mZ)} = {0.03, 1.7 · 10−4, 3 · 10−3}. The
full ellipse demonstrates the improvement for the absolute
errors {10−3, 10−5, 10−3} after operating GigaZ [53, 54].
The expected accuracies in MU and αU are summarized
in the values given in Table 2. The difference between
the unification point in the ellipse and the value of g3
is accounted for by contributions from high-scale physics,
color-triplet Higgs fields, for example. Thus, for a typical
set of SUSY parameters, the evolution of the gauge cou-
plings from low to high scales leads to a precision of 1.5
per-cent of the grand unification picture.

2.1.2 Gaugino and scalar mass parameters

The results for the evolution of the mass parameters to the
GUT scale MU are shown in Fig. 2. Figure 2a presents the
evolution of the gaugino parameters M−1

i which clearly
is under excellent control, as is the extrapolation of the
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a) b)

Q [GeV]

Fig. 1. a Running of the inverse gauge couplings. b Determination of MU , α−1
U ; the unification point U is defined by the

meeting point of α1 with α2. The wide error bands are based on present data; the narrow bands demonstrate the improvement
expected by future GigaZ analyses

slepton mass parameter squared of the first (and second)
and the third generation in Fig. 2c,d, respectively. The ac-
curacy deteriorates for the squark mass parameters and
for the Higgs mass parameter M2

H2
. The origin of the dif-

ferences between the errors for slepton, squark and Higgs
mass parameters can be traced back to the numerical size
of the coefficients in (3). Typical examples using the for-
mulas presented in Appendix B evaluated at Q = 500 GeV
read as follows:

M2
L̃1

� M2
0 + 0.47M2

1/2, (12)

M2
Q̃1

� M2
0 + 5.0M2

1/2, (13)

M2
H2

� −0.03M2
0 − 1.34M2

1/2 + 1.5A0M1/2 + 0.6A2
0, (14)

|µ|2 � 0.03M2
0 + 1.17M2

1/2 − 2.0A0M1/2 − 0.9A2
0. (15)

While the coefficients for sleptons are of order unity, the
coefficient cj for the squarks grows very large, cj � 5.0,
so that small errors in M2

1/2 are magnified by nearly an
order of magnitude in the solution for M0. By close inspec-
tion of (3) for the Higgs mass parameter it turns out that
the formally leading M2

0 part is nearly cancelled by the
M2

0 part of c′
j,β∆M2

β . Inverting (3) for M2
0 therefore gives

rise to large errors in the Higgs case. A representative set
of mass values and the associated errors, after evolution
from the electroweak scale to MU , is presented in Table 3.
The corresponding error ellipses for the unification of the
gaugino masses are shown in Fig. 2b.

Extracting the trilinear parameters Ak is difficult and
more refined analyses based on sfermion cross sections and
Higgs and/or sfermion decays are necessary to determine
these parameters accurately.

Table 3. Representative gaugino / scalar mass parameters and
couplings as determined at the electroweak scale and evolved
to the GUT scale in the mSUGRA scenario; based on LHC
and LC simulations. M2

L̃1,3
, M2

Q̃1,3
are the slepton and squark

isodoublet parameters of the first and third family whereas
M2

Ẽ1,3
, M2

Ũ1,3
and M2

D̃1,3
are the slepton and squark isosinglet

parameters of the first and third family. [The errors quoted
correspond to 1σ.]

Exp. input GUT value

M1 [GeV] 102.31 ± 0.25 250.00 ± 0.33
M2 [GeV] 192.24 ± 0.48 250.00 ± 0.52
M3 [GeV] 586 ± 12 250.0 ± 5.3

µ 358.23 ± 0.28 355.6 ± 1.2

M2
L̃1

[GeV2] (6.768 ± 0.005) · 104 (3.99 ± 0.41) · 104

M2
Ẽ1

[GeV2] (4.835 ± 0.007) · 104 (4.02 ± 0.82) · 104

M2
Q̃1

[GeV2] (3.27 ± 0.08) · 105 (3.9 ± 1.5) · 104

M2
Ũ1

[GeV2] (3.05 ± 0.11) · 105 (3.9 ± 1.9) · 104

M2
D̃1

[GeV2] (3.05 ± 0.11) · 105 (4.0 ± 1.9) · 104

M2
L̃3

[GeV2] (6.711 ± 0.050) · 104 (4.00 ± 0.41) · 104

M2
Ẽ3

[GeV2] (4.700 ± 0.087) · 104 (4.03 ± 0.83) · 104

M2
Q̃3

[GeV2] (2.65 ± 0.10) · 105 (4.1 ± 3.0) · 104

M2
Ũ3

[GeV2] (1.86 ± 0.12) · 105 (4.0 ± 3.6) · 104

M2
D̃3

[GeV2] (3.03 ± 0.12) · 105 (4.0 ± 2.6) · 104

M2
H1 [GeV2] (6.21 ± 0.08) · 104 (4.01 ± 0.54) · 104

M2
H2 [GeV2] (−1.298 ± 0.004) · 105 (4.1 ± 3.2) · 104

At [GeV] -446 ± 14 -100 ± 54

tan β 9.9 ± 0.9 –
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(a)
1/Mi [GeV−1]

Q [GeV]

(b)

(c)
M2

j̃
[103 GeV2]

Q [GeV]

(d)
M2

j̃
[103 GeV2]

Q [GeV]

Fig. 2a–d. mSUGRA: Evolution, from low to high scales, of a gaugino mass parameters, and b unification of gaugino mass
parameter pairs; c evolution of first-generation sfermion mass parameters and the Higgs mass parameter M2

H2 ; d evolution of
third-generation sfermion mass parameters and the Higgs mass parameter M2

H1 . The mSUGRA point probed is defined by the
parameters M0 = 200 GeV, M1/2 = 250 GeV, A0 = -100 GeV, tan β = 10, and sign(µ) = (+). [The widths of the bands indicate
the 1σ CL.]

At can be obtained from the mixing angle of the stop
sector by measuring the stop production cross section in
e+e− annihilation with different electron and/or positron
polarizations [35]. In the cases Ab and Aτ the situation
is more difficult, because these parameters influence the
mixing angle in the sbottom and stau sector only weakly
as is evident from (11). In these cases the b̃ and τ̃ couplings
to the Higgs bosons must be measured, because these cou-
plings include terms directly proportional to Ak tanβ. For
instance, by analyzing the decays τ̃2 → A0τ̃1, h0τ̃1 and
H0τ̃1, Aτ can be extracted within 10% [34]. If these modes

are kinematically forbidden, the couplings can either be
measured in the decays of the heavier Higgs bosons, as
H0, A0 → τ̃1τ̃1, or by means of the cross sections for pro-
cesses such as e+e− → τ̃1τ̃1h

0. Similar procedures are
expected to apply for Ab. In certain areas of the SUSY
parameter space, the trilinear couplings can also be ex-
tracted from measurements of the degree of the fermion
polarization [55] in sfermion decays t̃, b̃ and τ̃ .

The unified value A0 of the At coupling, the best mea-
sured coupling among the Ak parameters, is shielded by
the pseudo-fixed point behavior of At [56] since dt � 0.2
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Table 4. Comparison of the ideal parameters with the ex-
perimental expectations for the particular mSUGRA reference
point analyzed in this report. [All mass parameters are given
in units of GeV.]

Ideal Experimental error

MU 2 · 1016 1.6 · 1014

α−1
U 24.361 0.007

M1/2 250 0.08
M0 200 0.09
A0 −100 1.8

µ 358.23 0.21
tan β 10 0.1

is small compared to d′
t � 2. The impact of the other tri-

linear couplings on physical observables is weak so that
large experimental errors are expected. As a result, the
universal character of the fundamental parameter A0 can-
not be determined as precisely as the other parameters at
the GUT scale.

Although the trilinear couplings Ab and Aτ have only
little impact on the physical observables, they do strongly
influence the running of the third-generation sfermion
mass parameters as well as the Higgs mass parameters.
The error propagation is stabilized if Aτ and Ab can be
measured in the way outlined above. [Otherwise the errors
would increase by an order of magnitude.] The detailed
analysis in this report has been based on the auxiliary as-
sumption that Ab and Aτ are within 1σ of At = A0 at
MU ; this assumption is conservative if the envisaged ex-
perimental analyses of Aτ and Ab can be performed at the
electroweak scale indeed.

Even though the auxiliary assumption seems conserva-
tive, given the size of the error on A0 determined from At,
dedicated phenomenological and experimental analyses of
the third family must be developed, as indicated above, to
improve the measurement of the associated parameters, in
particular in view of the evolution of the Higgs mass pa-
rameter which induces electroweak symmetry breaking.

Inspecting Fig. 2c,d leads to the conclusion that a blind
top–down approach eventually generates an incomplete
picture. Global fits based on mSUGRA without allowing
for deviations from universality are dominated by M1,2
and the slepton mass parameters due to the pseudo-fixed
point behavior of the squark mass parameters. Therefore,
the structure of the theory in the squark sector is not
scrutinized stringently at the unification scale in the top–
down approach, let alone the Higgs sector. By contrast,
the bottom–up approach demonstrates very clearly the
extent to which the theory can be tested at the high scale
quantitatively.

The quality of the test is apparent from Table 3, in
which the evolved gaugino values should reproduce the
universal mass M1/2 = 250 GeV and all the scalars the
mass M0 = 200 GeV. They are compared with the global
mSUGRA fit of the universal parameters in Table 4.

2.2 Left–right supergravity

It is generally accepted that neutrinos are massive parti-
cles, though at a very low scale. Supersymmetric scenarios
like MSSM and mSUGRA must therefore be extended to
incorporate the right-handed neutrino degrees of freedom.
Since the complexity grows strongly with the increasing
number of parameters, it is useful, in a first attempt, to
analyze the system in characteristic scenarios based on
compelling physical assumptions. In particular, we will as-
sume that the small neutrino masses are generated by the
seesaw mechanism [20]. Moreover, we will assume hierar-
chies for the heavy neutrino masses as well as the neutrino
Yukawa couplings similar to the up-type particles in the
quark sector; such a scheme, suggested by SO(10) GUT, is
compatible with the data collected in low-energy neutrino
experiments [57].

This scenario can be embedded in a grand unified
SO(10) theory with the following breaking pattern of the
symmetries. The SO(10) symmetry is realized between the
Planck scale MP and a scale MSO(10) at which the symme-
try breaks to SU(5). The scale MSO(10) is assumed above
the scale MU where SU(5) breaks to the symmetry group
SU(3)C × SU(2)L × U(1)Y of the standard model. At the
scale MU the gauge couplings split and the effective the-
ory is the MSSM plus right-handed neutrinos with masses
of order 109 to 1015 GeV. Below this mass scale the right-
handed neutrinos freeze out and the MSSM is effectively
realized in its standard form. The relevant SUSY parame-
ters are summarized in Table 5. It is less obvious that MU

associated with the SU(5) symmetry is the scale where
the gaugino and scalar mass parameters are universal. The
supporting argument for this point is derived empirically
from the unification of the gauge couplings. Nevertheless,
the subsequent analysis will be based on this hypothesis
which, of course, is a clear target for confirmation or re-
jection in the bottom–up approach we investigate2.

In this left–right supergravity point, called LR-SUGRA
for short3, we have probed the same SUSY parameters as
above, complemented by the same universal parameters in
the right-handed sneutrino sector. The sneutrinos ν̃L and
ν̃R mix by the (large) Yukawa interactions in the ν̂R sector
of the superpotential to form the mass eigenstates ν̃1 and
ν̃2. Also in this sector an effective seesaw mechanism is
induced by the large νR mass, as can be most easily seen
by considering the one-generation case:

m2 =


M2

L̃
+

1
2
m2

Z cos 2β
1√
2
Yν(Aνv2 − µv1)

1√
2
Yν(Aνv2 − µv1) M2

Ñ
+ M2

νR


 . (16)

2 Potential sources of deviations from this picture can eas-
ily be illustrated by assuming MSO(10) as the scale proper of
universality: The Yukawa interactions contribute differently to
the running of the M2

1̃0, M2
5̃ , M2

Ñ
; the same holds true for the

A parameters [58]. Moreover, different D-term contributions
to the scalar masses are in general generated by the breaking
mechanism from SO(10) to SU(5) [59]

3 Other left–right scenarios will be presented in a forthcom-
ing publication
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Table 5. Scales and soft SUSY breaking parameters of the
effective left–right supergravity theory LR-SUGRA analyzed
in this report

Scale Gauge group Parameters

MP–MSO(10) SO(10) M1/2, M2
1̃6, A0

MSO(10)–MU SU(5) M1/2, M2
1̃0, M2

5̃
M2

Ñ
, A10, A5, Aν

MU–MνR SU(3)C ⊗ SU(2)L ⊗ U(1)Y M1, M2, M3

M2
Q̃

, M2
Ũ

, M2
D̃

M2
L̃
, M2

Ñ
, M2

Ẽ

Au, Ad, Aτ , Aν

MνR–MEW SU(3)C ⊗ SU(2)L ⊗ U(1)Y M1, M2, M3

M2
Q̃

, M2
Ũ

, M2
D̃

M2
L̃
, M2

Ẽ

Au, Ad, Aτ

In this mass matrix MνR is the [GUT-scale] mass of the
right-handed neutrino, MÑ the scalar [TeV-scale] mass
parameter of the right sneutrino, Yν and Aν the neutrino
Yukawa coupling and the neutrino trilinear coupling, re-
spectively. v1 and v2 are the vacuum expectation values
of the Higgs field with isospin −1/2 and isospin 1/2, re-
spectively. The approximate eigenvalues of the sneutrino
mass matrix read

m2
ν̃1

� M2
L̃

+
1
2
m2

Z cos 2β − Y 2
ν

(Aνv2 − µv1)2

2M2
νR

, (17)

m2
ν̃2

� M2
νR

+ M2
Ñ

+ Y 2
ν

(Aνv2 − µv1)2

2M2
νR

. (18)

The ν̃R mass is close to the large GUT-scale νR mass and
not to the TeV-scale mass parameter MÑ – as anticipated
by the Yukawa term in the diagonal RR matrix element of
(16). The rotation of the current to the mass eigenstates

ν̃1 = cos θν̃ ν̃L + sin θν̃ ν̃R, (19)
ν̃2 = − sin θν̃ ν̃L + cos θν̃ ν̃R (20)

is described by a small mixing angle,

sin θν̃ � Yν |Aνv2 − µv1|/(
√

2M2
νR

), (21)
cos θν̃ � 1. (22)

Thus, to a very good approximation, ν̃1 coincides with
ν̃L, and ν̃2 with ν̃R.

The heavy right-handed neutrino masses are calcu-
lated by identifying the Yukawa couplings with the up-
type quark couplings in the quark sector at the GUT
scale (largely equivalent to the SO(10) scale in this re-
gard) and by identifying the light neutrino masses with
the neutrino mass differences in the large mixing angle
for the solar neutrino problem solution: mνL1

= 10−5 eV,
mνL2

= 3·10−3 eV, mνL3
= 6·10−2 eV; MνR1

= 3·109 GeV,
MνR2

= 1.4 · 1011 GeV, MνR3
= 1.7 · 1014 GeV.

The impact on the evolution of the mass parameters is
rather simple. In the analysis of the first two generations

the Yukawa interactions involving the heavy neutrinos and
the R-sneutrinos are so small that their effect is not notice-
able in practice. The evolution of the gaugino and scalar
mass parameters is not affected by the left–right exten-
sion of the system in the present form as is evident from
Fig. 3a,c. This is only different for the third generation
and for M2

H2
owing to the enhanced Yukawa coupling in

this case as shown in Figs. 3b,d. The sensitivity to the
intermediate νR scales remains rather weak however, be-
cause neutrino Yukawa couplings affect the evolution of
the sfermion mass parameters only mildly.

Since the νR of the third generation is unfrozen only
beyond the scale Q = MνR the impact of the LR exten-
sion becomes visible in the evolution only at very high
scales. In Fig. 3b we display the evolution of M2

Ẽ3
, M2

L̃3

and M2
H2

for illustrative purposes. The full lines include
the effects of the right-handed neutrino, which are to be
compared with the dashed lines where the νR sector is cut-
off. The scalar mass parameter M2

Ẽ3
appears unaffected

by the right-handed sector, while M2
L̃3

and M2
H2

clearly
are. Only the picture including νR, ν̃R is compatible with
the unification assumption. The kinks in the evolution of
M2

L̃3
and M2

H̃2
can be traced back to the fact that around

1014 GeV the third-generation (s)neutrinos become quan-
tum mechanically effective, given a large enough neutrino
Yukawa coupling to influence the evolution of these mass
parameters.

A much better understanding of the third-generation
family must be achieved to draw quantitative conclusions
beyond the rough estimates of the νR scales sketched in
the present analysis.

3 Gauge mediated supersymmetry breaking

Motivated by the observed suppression of flavor-changing
neutral transitions, supersymmetry breaking mediated by
gauge interactions from a secluded sector to the visible
eigenworld, offers an automatic solution to this problem [9,
60]. The scalar and the F components of a standard-model
singlet superfield S acquire vacuum expectation values 〈S〉
and 〈FS〉 through interactions with fields in the secluded
sector, thus breaking supersymmetry4.

Vector-like messenger fields M , carrying non-zero
SU(3)×SU(2)×U(1) charges and coupling to S, transport
the supersymmetry breaking to the eigenworld.

The system is characterized by the mass MM ∼ 〈S〉
of the messenger fields and the mass scale Λ = 〈FS〉/〈S〉
setting the size of the gaugino and scalar masses. MM is
expected to be in the range of 10 TeV to 1 EeV and Λ has

4 A solution of the doublet-triplet splitting problem can be
found in GMSB by introducing two different S fields. The
masses of supersymmetric particles are less constrained in this
approach than in the one-scale model, and they depend on the
values of the two Λi parameters. In particular, the approximate
equality of the gaugino masses at the GUT scale is lifted; see
[61] for details
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Fig. 3a–d. LR-SUGRA with νR: Evolution of a gaugino mass parameters; b evolution of third-generation slepton mass param-
eters and Higgs mass parameters M2

H2 , with/out neutrino-R sector; c evolution of first-generation sfermion mass parameters
and Higgs mass parameters M2

H2 ; d evolution of third-generation sfermion mass parameters and Higgs mass parameters M2
H1 .

The mSUGRA point probed is characterized by the parameters M0 = 200 GeV, M1/2 = 250 GeV, A0 = -100 GeV, tan β = 10,
and sign(µ) = (+), while the νR3 scale is taken close to 1014 GeV. [The widths of the bands indicate the 1σ CL.]

to be smaller than MM. The gaugino masses

Mi(MM) = (N5 + 3N10)g (Λ/MM) αi(MM)Λ (23)

are generated by loops of the scalar and fermionic messen-
ger component fields; Ni is the multiplicity of messengers
in the 5 + 5 and 10 + 10 vector-like multiplets, and

g(x) =
1 + x

x2 log(1 + x) + (x → −x) (24)

is the messenger-scale threshold function [62] which ap-
proaches unity for Λ � MM. Masses of the scalar fields

in the visible sector are generated by two-loop effects of
gauge / gaugino and messenger fields:

M2
j̃
(MM) = 2(N5 + 3N10)f (Λ/MM)

3∑
i=1

kiC
i
jα

2
i (MM)Λ2,

(25)
with ki = 1, 1, 3/5 for SU(3), SU(2), and U(1), respec-
tively; the coefficients Ci

j are the quadratic Casimir invari-
ants, being 4/3, 3/4, and Y 2/4 for the fundamental rep-
resentations j̃ in the groups i = SU(3), SU(2) and U(1),
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with Y = 2(Q − I3) denoting the usual hypercharge; also
the threshold function [62]

f(x) =
1 + x

x2

[
log(1 + x) − 2Li2

(
x

1 + x

)

+
1
2
Li2

(
2x

1 + x

)]
+ (x → −x) (26)

approaches unity for Λ � MM. As evident from (25),
scalar particles with identical standard-model charges
squared have equal masses at the messenger scale MM.

In the minimal version of GMSB, the A parameters
are generated at three-loop level and they are practically
zero at MM.

We have investigated this scheme for the point Λ =
100 TeV, MM = 200 TeV, N5 = 1, N10 = 0, tanβ = 15
and µ > 0 corresponding to the Snowmass Point SPS#8.

We find for the low-energy data: BR(b → sγ) = 3.7 ·
10−4, ∆[g − 2]µ = 15 · 10−10, ∆ρ = 64 · 10−5.

The evolution5 of the gaugino and sfermion mass pa-
rameters of the first and third generation as well as the
Higgs mass parameters, including two-loop β-functions,
are presented in Fig. 4.

Owing to the influence of the A parameters in the two-
loop RGEs for the gaugino mass parameters, the gaugino
mass parameters do not meet at the same point as the
gauge couplings in this scheme.

It is obvious from the figure that the GMSB scenario
cannot be confused with the universal supergravity sce-
nario6. [Specific experimental signatures generated in the
decays of the next to lightest supersymmetric particle, the
neutralino χ̃0

1 or the stau τ̃1, to gravitinos which are very
light in GMSB, provide a complementary experimental
discriminant; see [17, 64]].

The bands of the slepton L-doublet mass parameter
M2

L̃
and the Higgs parameter M2

H2
, which carry the same

moduli of standard-model charges, cross at the scale MM.
The crossing, which is indicated by an arrow in Fig. 4c, is
a necessary condition (in the minimal form) for the GMSB
scenario to be realized.

The two scales Λ and MM can be extracted from the
spectrum of the gaugino and scalar particles. Combining
the two species allows one to determine the multiplicity
coefficient (N5 + 3N10) in addition. The dependence of
the spectra on Λ is, trivially, very strong. The messen-
ger scale MM can be determined only from the running
of the masses between the messenger scale and the elec-
troweak scale; despite being governed by weakly varying
logarithms, the accuracy in determining MM is surpris-
ingly good. For the point analyzed in the example above,
the following accuracy for the mass parameters and the
messenger multiplicity has been found:

Λ = (1.01 ± 0.03) · 102 TeV, (27)
5 The same formulae as in Appendix B.1 apply for the GMSB

boundary conditions at the electroweak scale by replacing MU

by MM, the GMSB scale
6 A comparison of the mass characteristics at the low scale

between mSUGRA and GMSB in a top–down approach is pre-
sented in [63]

Table 6. Average ratios of the scalar mass parameters as pre-
dicted in GMSB solely by group factors and gauge couplings;
compared at the 95% CL with the mSUGRA reference point

Mass2 ratios 〈GMSB〉 �=mSUGRA

H2
2/L2

1 1 –

E2
1/L2

1 0.25 ≥0.8
Q2

1/L2
1 8.87 ≤3.2

U2
1 /L2

1 8.03 ≤ 3.0
D2

1/L2
1 7.95 ≤3.2

H2
1/L2

1 1 ≤1.0

MM = (1.92 ± 0.24) · 102 TeV, (28)
N5 + 3N10 = 0.978 ± 0.056. (29)

The correlation between Λ and MM is shown in Fig. 4b.
While the gaugino masses in GMSB evolve nearly in

the same way as in mSUGRA, the running of the scalar
masses is quite different in both theories. Moreover, at
the messenger scale the ratios of scalar masses squared in
the simplest version of GMSB are determined solely by
group factors and gauge couplings, being independent of
the specific GMSB characteristics, i.e. messenger multi-
plicities and Λ mass scale:

M2
j̃
(MM)

M2
j̃′(MM)

=
∑3

i=1 kiC
j
i α2

i (MM)∑3
i=1 kiC

j′
i α2

i (MM)
. (30)

The predictions for these ratios are listed in Table 6. The
ratios in GMSB are distinctly different from the ratios in
mSUGRA, taken at the scale where the upper boundary of
the 2σ band for H2

2/L2
1 approaches unity from below. [Ide-

ally all ratios approach unity only at the grand unification
scale MU in mSUGRA.] The distinct differences between
GMSB and mSUGRA are clearly visible in Figs. 5a ver-
sus b.

4 String induced supersymmetry breaking

In the previously analyzed SUGRA and GMSB models
the structure of the supersymmetry breaking mechanisms
sui generis and the fields involved in the hidden sectors
are shielded from the eigenworld. Four-dimensional strings
naturally give rise to a minimal set of fields for inducing
supersymmetry breaking; they play the rôle of the fields in
the hidden sectors: the dilaton S and the moduli Tm chiral
superfields which are generically present in large classes
of 4-dimensional heterotic string theories7. The vacuum
expectation values of S and Tm, generated by genuinely
non-perturbative effects, determine the soft supersymme-
try breaking parameters. In this approach, which we will
adopt for a characteristic case study without reference to
open theoretical problems of dilaton / moduli field sta-
bilization, grand unification at the standard scale can be

7 For other scenarios see [65]
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Fig. 4a–d. GMSB: Evolution of a gaugino mass parameters; b Λ-MM determination in the bottom–up approach; c first-
generation sfermion mass parameters and Higgs mass parameter M2

H2 ; d third-generation sfermion mass parameters and Higgs
mass parameter M2

H1 . The point probed, SPS#8, is characterized by the parameters MM = 200 TeV, Λ = 100 TeV, N5 = 1,
tan β = 15, and sign(µ) = (+). [The widths of the bands indicate the 1σ CL.]

reconciled with the higher string scale by moduli depen-
dent string loop corrections.

In the following we assume that all moduli fields get
the same vacuum expectation values and that they couple
in the same way to matter fields. Therefore, we omit the
index m and take only one moduli field T .

The properties of the supersymmetric theories are
quite different for dilaton and moduli dominated scenar-
ios. This can be quantified by introducing a mixing angle
θ, characterizing the S̃ and T̃ components in the wave
functions of the Goldstino, which is associated with the

breaking of supersymmetry and which is absorbed to gen-
erate the mass of the gravitino:

G̃ = sin θS̃ + cos θT̃ . (31)

The mass scale is set by the second parameter of the the-
ory, the gravitino mass m3/2.

A dilaton dominated scenario, i.e. sin θ → 1, leads to
universal boundary conditions of the soft supersymmetry
breaking parameters. Universality is broken8 only slightly

8 For other mechanisms of breaking universality see e.g. [66]
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a) b)

Fig. 5a,b. Evolution of representative ratios of first-generation scalar masses squared, a in case of GMSB; b in case of mSUGRA.
The messenger scale MM is defined as the scale where MH2 = ML1 . The arrows in both figures indicate the expectation values
of the mass ratios squared in GMSB at the scale MM

by small loop effects. On the other hand, in moduli field
dominated scenarios, cos θ → 1, the gaugino mass param-
eters are universal to lowest order [broken only in higher
orders], but universality is not realized for the scalar mass
parameters in general. The breaking is quantified by mod-
ular weights nj characterizing the couplings between the
matter and the moduli fields in orbifold compactifications.
Within one generation significant differences between left
and right field components and between sleptons and
squarks can occur; since these patterns are modified only
by small loop effects between different generations, flavor-
changing neutral effects remain suppressed.

In leading order, and next-to-leading order denoted by
the quantities ∆M , the masses [13] are given by the fol-
lowing expressions for the gaugino sector:

Mi = −g2
i m3/2s

√
3 sin θ + ∆Mi, (32)

∆Mi = − g2
i

16π2 m3/2


bi + s

√
3 sin θg2

s


Ci −

∑
j

Cj
i




+ 2t cos θG2(t)


δGS + bi − 2

∑
j

Cj
i (1 + nj)




 ,

(33)

and for the scalar sector

M2
j̃

= m2
3/2

(
1 + nj cos2 θ

)
+ ∆M2

j̃
, (34)

∆M2
j̃

= m2
3/2

{
2
√

3s sin θ

[∑
i

γi
jg

2
i − 1

2s

∑
km

γkm
j

]
(35)

+ γj + 2t cos θG2(t)
∑
km

γkm
j (nj + nk + nm + 3)

}
,

while the A parameters read

Ajkm = −m3/2

[
2t cos θ(nj + nk + nm + 3)G2(t)

− sin θ√
3

]
+ ∆Ajkm, (36)

∆Ajkm = m3/2(γj + γk + γm). (37)

The mass m3/2 is the gravitino mass introduced earlier.
The gravitino mass can be expressed in terms of the
Kähler potential K and the superpotential W , which in-
clude the (non-perturbative) solutions of all the fields at
the string scale: m3/2 = 〈exp(K/2)W 〉. s = 〈S〉 is the vac-
uum expectation values of the dilaton field. t = 〈T 〉/m3/2
is the vacuum expectation value of the moduli field(s),
and G2(t) = 2ζ(t) + 1/2t is the non-holomorphic Eisen-
stein function with ζ denoting the Riemann zeta function.
δGS is the parameter of the Green–Schwarz counterterm.
The γj are the anomalous dimensions of the matter fields,
the γi

j and γkm
j are their gauge and Yukawa parts, respec-

tively. Ci, Cj
i are the quadratic Casimir operators for the

gauge group Gi, respectively, in the adjoint representation
and in the matter representation.

In the case of the gaugino mass parameters the next-to-
leading order effects induce a splitting proportional to the
β-functions bi which is large enough to be “measured” at
future collider experiments as demonstrated in Fig. 6a,b.

In the case of the scalar mass parameters the next-
to-leading order contributions generate small departures
from non-universality between the generations even if the
corresponding modular weight is generation independent.
These departures are proportional to the Yukawa cou-
plings squared so that the third generation, in particular
the stop sector, is mainly affected.
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Fig. 6a,b. String scenario: Evolution of a gaugino mass parameters [the insert expands on the breaking of universality at
the GUT scale]; b correlation between the mixing parameter sin2 θ and the vacuum expectation value of the moduli field 〈T 〉;
c evolution of first-generation sfermion mass parameters and Higgs mass parameters M2

H2 ; d evolution of third-generation
sfermion mass parameters and Higgs mass parameters M2

H1 . The point probed is characterized by the parameters m3/2 =
180 GeV, δGS = 0, sin2 θ = 0.9, < T >= 14 m3/2, tan β = 10, sign(M2µ) = (+), nLi = −3, nEi = −1,nQi = 0, nUi = −2,
nDi = 1 and nH1 = nH2 = −1. [The widths of the bands indicate the 1σ CL.]

Scenarios have been found in which the phenomeno-
logical unification of the three gauge couplings can be
reconciled with a string mass scale which is an order of
magnitude larger than the unification scale [67]:

α−1
i (MU ) = α−1(MString) + ∆α−1

i (38)

The corrections ∆α−1
i to universality at MU depend on

the value of the moduli fields and the modular weights:

∆α−1
i =

1
4π

(b′
i − bGS) log |η(t)|4, (39)

where η(t) is the Dedekind η-function and

b′
3 = 9 +

3∑
i=1

(2nQi + nUi + nDi) , (40)
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Table 7. Representative gaugino / scalar mass parameters and
couplings as determined at the electroweak scale and evolved
to the GUT scale in the string scenario; based on LHC and LC
simulations. M2

L̃1,3
, M2

Q̃1,3
are the slepton and squark isodou-

blet parameters of the first and third family whereas M2
Ẽ1,3

,

M2
Ũ1,3

and M2
D̃1,3

are the slepton and squark isosinglet parame-
ters of the first and third family. [The errors quoted correspond
to 1σ.]

Exp. input GUT value

M1 [GeV] −124.98 ± 0.29 −303.22 ± 0.65
M2 [GeV] −231.00 ± 0.50 −299.64 ± 0.52
M3 [GeV] −677.3 ± 7.6 −292.4 ± 3.3

µ −377.59 ± 0.29 −375.5 ± 1.2

M2
L̃1

[GeV2] (6.354 ± 0.005) · 104 (2.17 ± 0.43) · 104

M2
Ẽ1

[GeV2] (3.739 ± 0.005) · 104 (2.88 ±0.86) · 104

M2
Q̃1

[GeV2] (4.16± 0.09) · 105 (3.1 ±1.3) · 104

M2
Ũ1

[GeV2] (3.80±0.12) · 105 (2.5 ±1.9) · 104

M2
D̃1

[GeV2] (3.88±0.13) · 105 (3.5 ±1.7) · 104

M2
L̃3

[GeV2] (5.635±0.039) · 104 (2.18 ±0.46) · 104

M2
Ẽ3

[GeV2] (2.253±0.024) · 104 (2.90 ±0.93) · 104

M2
Q̃3

[GeV2] (3.28±0.13) · 105 (3.2 ± 2.1) · 104

M2
Ũ3

[GeV2] (2.58±0.15) · 105 (2.6 ±3.3) · 104

M2
D̃3

[GeV2] (3.53±0.15) · 105 (3.5 ±1.8) · 104

M2
H1 [GeV2] (3.80±0.82) · 103 (2.85 ±0.62) · 104

M2
H2 [GeV2] (−1.429 ± 0.004) · 105 (3.1 ± 2.7) · 104

At [GeV] 452 ± 17 −96 ± 64

tan β 9.93 ± 0.88 –

b′
2 = 15 +

3∑
i=1

(3nQi
+ nLi

) + nH1 + nH2 , (41)

b′
1 =

99
5

+
1
5

3∑
i=1

(nQi
+ 8nUi

+ 2nDi
+ 3nLi

+ 6nEi
)

+
3
5

(nH1 + nH2) (42)

as compared to the one-loop SU(3) × SU(2) × U(1) β-
functions (b3, b2, b1) = 33/5, 1,−3.

We have analyzed a mixed dilaton / moduli super-
string scenario but with dominating dilaton field compo-
nent, sin2 θ = 0.9, and with different couplings of the mod-
uli field to the (L,R) sleptons, the (L,R) squarks and to
the Higgs fields, corresponding to the O-I representation
nLi

= −3, nEi
= −1, nH1 = nH2 = −1, nQi

= 0, nDi
= 1

and nUi
= −2, that is one out of several assignments that

is adopted quite frequently in the literature. The gravitino
mass is chosen to be 180 GeV in this analysis.

We find for the low-energy data: BR(b → sγ) = 3.1 ·
10−4, ∆[g − 2]µ = 14 · 10−10, ∆ρ = 13 · 10−5; and Ωh2 =
0.25.

Given this set of superstring induced parameters, the
evolution of the gaugino and scalar mass parameters is
displayed in Fig. 6. The pattern of the trajectories is re-

Table 8. Comparison of the experimentally reconstructed val-
ues with the ideal fundamental parameters in a specific exam-
ple for a string effective field theory

Parameter Ideal Reconstructed

m3/2 180 179.9 ± 0.4
〈S〉 2 1.998 ± 0.006
〈T 〉 14 14.6 ± 0.2
sin2 θ 0.9 0.899 ± 0.002
g2

s 0.5 0.501 ± 0.002
δGS 0 0.1 ± 0.4

nL −3 −2.94 ± 0.04
nE −1 −1.00 ± 0.05
nQ 0 0.02 ± 0.02
nU −2 −2.01 ± 0.02
nD +1 0.80 ± 0.04
nH1 −1 −0.96 ± 0.06
nH2 −1 −1.00 ± 0.02

tan β 10 10.00 ± 0.13

markably different from the other scenarios. The breaking
of universality in the gaugino sector, induced by string
threshold corrections, cf. Table 7, can be demonstrated at
a statistically significant level.

In fact, these differences can be exploited to deter-
mine superstring parameters as argued above. The num-
ber of observables in the set of gauge couplings gi, gaugino
masses Mi and scalar masses Mj̃ exceeds the number of
parameters in the superstring effective field theory: the
gravitino mass m3/2, the dilaton / moduli mixing angle
sin θ, the ground-state value of the moduli field 〈T 〉 and
the ground-state value of the dilaton field 〈S〉. The lat-
ter is at tree level directly related to the string coupling:
1/g2

s = 〈S〉.
Based on the “experimental” input observables, the

fundamental parameters of the string effective field theory
can be reconstructed; the reconstructed values are com-
pared with the ideal values in Table 8. The errors for the
basic parameters sin θ, 〈T 〉/m3/2 are displayed in Fig. 6b.

Thus, high-precision measurements at high energy pro-
ton and e+e− linear colliders provide access to crucial
derivative parameters in string theories.

5 Conclusions

In supersymmetric theories stable extrapolations can be
performed from the electroweak scale to the grand unifica-
tion scale close to the Planck scale. This feature has been
demonstrated compellingly in the evolution of the three
gauge couplings to the unification point in the minimal
supersymmetric theory.

Such extrapolations are made possible by high-pre-
cision measurements of the low-energy parameters. The
operation of the e+e− colliders LEP and SLC has been
crucial in this context. In the near future an enormous
extension of this area will be possible if measurements
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at LHC and prospective e+e− linear colliders are com-
bined to draw, if realized in nature, a comprehensive high-
precision picture of the supersymmetric particles and their
interactions. Based merely on measurements at low ener-
gies, the parameters of the theory can be evolved to high
scales by means of renormalization group techniques.

Supersymmetric theories and their breaking mecha-
nisms have simple structures and great regularities at high
scales. Extrapolations to high scales are therefore crucial
to uncover the regularities. The bottom–up approach in
the extrapolation of parameters measured at low scales to
the high scales provides the most transparent picture. In
this way the basis of the SUSY breaking mechanism can
be explored and the crucial elements of the fundamental
supersymmetric theory can be reconstructed. The method
can thus be used to explore particle physics phenomena
at a scale where, eventually, particle physics is linked to
gravity.

Apart from other examples, we have focused on two
interesting scenarios in this approach. The universality of
gaugino and scalar mass parameters in minimal supergrav-
ity can be demonstrated very clearly if realized in the su-
persymmetric theory. Small deviations from universality,
on the other hand, may be exploited to measure the funda-
mental parameters in superstring effective field theories,
i.e. the strength of dilaton and moduli fields, their mixing
and the modular weights. In this way, high-precision ex-
trapolations of gauge and supersymmetry parameters can
establish direct contact between superstring theory and
experiment.

Many more refinements of the theoretical calculations
and future experimental analyses will be necessary to ex-
pand the picture we have drawn in this first attempt. How-
ever, the prospect of exploring elements of the ultimate
unification of the interactions provides a strong impetus
to this direction.
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Appendix

A One-loop RGEs

In this first appendix we collect the one-loop renormaliza-
tion group equations (RGEs) including right-handed neu-
trinos.

Using the notation for the gauge and Yukawa couplings

αi =
g2

i

16π2 , i = 1, 2, 3; Yk =
y2

k

16π2 , k = t, b, τ, ν, (43)

the one-loop RG equations can be written as

α̇i = −biα
2
i , (44)

Ẏk = Yk

(∑
i

ckiαi −
∑

l

aklYl

)
, (45)

where the dot denotes the derivative with respect to t =
log M2

U/Q2, and

bi = {33/5, 1,−3}, (46)
cti = {13/15, 3, 16/3}, cbi = {7/15, 3, 16/3}, (47)
cτi = {9/5, 3, 0}, cνi = {3/5, 3, 0}, (48)
atl = {6, 1, 0, 1}, abl = {1, 6, 1, 0}, (49)
aτl = {0, 3, 4, 1}, aνl = {3, 0, 1, 4}, (50)

while the RGEs for the gaugino mass parameters and the
A parameters read

Ṁi = −biαiMi, (51)

Ȧk =
∑

i

ckiαiMi −
∑

l

aklAl. (52)

The RGEs for the soft SUSY breaking mass parameters of
the third generation and the Higgs mass parameters are
given by

ṀL̃3
= −2YτXτ − 2YνXν +

6
5
α1M

2
1

+6α2M
2
2 +

3
5
S, (53)

ṀÑ3
= −4YνXν , (54)

ṀẼ3
= −4YτXτ +

24
5

α1M
2
1 − 6

5
S, (55)

ṀQ̃3
= −2YbXb − 2YtXt +

2
15

α1M
2
1 + 6α2M

2
2

+
16
3

α3M
2
3 − 1

5
S, (56)

ṀŨ3
= −4YtXt +

32
15

α1M
2
1 +

16
3

α3M
2
3 +

4
5
S, (57)

ṀD̃3
= −4YbXb +

8
15

α1M
2
1 +

16
3

α3M
2
3 − 2

5
S, (58)

ṀH1 = −6YbXb − 2YτXτ +
6
5
α1M

2
1 + 6α2M

2
2

+
3
5
S, (59)

ṀH2 = −6YtXt − 2YνXν +
6
5
α1M

2
1 + 6α2M

2
2

−3
5
S, (60)

with

Xt = M2
Q̃3

+ M2
Ũ3

+ M2
H2

+ A2
t , (61)

Xb = M2
Q̃3

+ M2
D̃3

+ M2
H1

+ A2
b , (62)

Xτ = M2
L̃3

+ M2
Ẽ3

+ M2
H1

+ A2
τ , (63)

Xν = M2
L̃3

+ M2
Ñ3

+ M2
H2

+ A2
ν , (64)
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S = M2
H2

− M2
H1

(65)

+
3∑

i=1

(
M2

Q̃i
− M2

L̃i
− 2M2

Ũi
+ M2

D̃i
+ M2

Ẽi

)
.

The evolution equations for the first two generations are
obtained by replacing appropriately the corresponding pa-
rameters and Yukawa couplings.

B Solutions of the one-loop RGEs

In the following subsections we present the analytical so-
lutions to the one-loop RGEs including Yukawa couplings
using the procedure of [68]. We also include the generic
trace term S (see (65)) in the solutions which had been
neglected in [68].

In this appendix we mark all quantities defined at the
GUT-scale MU with a subscript U .

B.1 MSUGRA boundary conditions at the GUT scale

The solutions for the case of the MSSM are summarized
first for proper reference.

The solution for the gauge couplings and Yukawa cou-
plings are given by

αi(t) =
αi,U

1 + biαi,U t
, (66)

Yk(t) =
Yk,Uuk

1 + akkYk,U

∫ t

0 uk

, (67)

where the functions uk obey the integral system of equa-
tions

ut =
Et

(1 + 6Yb,U

∫ t

0 ub)1/6
, (68)

ub =
Eb

(1 + 6Yt,U

∫ t

0 ut)1/6(1 + 4Yτ,U

∫ t

0 uτ )1/4
, (69)

uτ =
Eτ

(1 + 6Yb,U

∫ t

0 ub)1/2
, (70)

and the functions Ek denote the products

Ek =
3∏

i=1

(1 + biαi,U t)cki/bi . (71)

The system of integral equations can be solved iteratively
and a discussion on the convergence can be found in [68].

The gaugino mass parameters and the Ak parameters
are given by

Mi(t) =
Mi,U

1 + biαi,U t
=

αi(t)
αi,U

Mi,U , (72)

Ak = −ek +
Ak,U/Yk,U + akk

∫
ukek

1/Yk,U + akk

∫
uk

, (73)

with the coefficients

et = F̃t +
Ab,U

∫
ub − ∫ ubeb

1/Yb,U + 6
∫

ub
, (74)

eb = F̃b +
At,U

∫
ut − ∫ utet

1/Yt,U + 6
∫

ut

+
Aτ,U

∫
uτ − ∫ uτeτ

1/Yτ,U + 4
∫

uτ
, (75)

eτ = F̃τ + 3
Ab,U

∫
ub − ∫ ubeb

1/Yb,U + 6
∫

ub
, (76)

F̃k = t

3∑
i=1

ckiMi,Uαi(t). (77)

The mass parameters of the first two generations (k = 1, 2)
can be expressed as

M2
L̃k

(t) = M2
L̃k,U

+
3
2
f2(t) +

3
10

f1(t) +
3
5
S′(t), (78)

M2
Ẽk

(t) = M2
Ẽk,U

+
6
5
f1(t) − 6

5
S′(t), (79)

M2
Q̃k

(t) = M2
Q̃k,U

+
8
3
f3(t) +

3
2
f2(t) +

1
30

f1(t)

−1
5
S′(t), (80)

M2
Ũk

(t) = M2
Ũk,U

+
8
3
f3(t) +

8
15

f1(t) +
4
5
S′(t), (81)

M2
D̃k

(t) = M2
D̃k,U

+
8
3
f3(t) +

2
15

f1(t) − 2
5
S′(t), (82)

with

fi(t) =
M2

i,U

bi

(
1 − 1

(1 + αi,Ubit)2

)
, (83)

S′(t) =
1

2b1
[S(t) − S(MU )] , (84)

S(t) = S(MU )(1 + β1t)2, (85)

S(MU ) = M2
H2,U − M2

H1,U +
3∑

i=1

(
M2

Q̃i,U
− M2

L̃i,U

−2M2
Ũi,U

+ M2
D̃i,U

+ M2
Ẽi,U

)
, (86)

in agreement with [69]. The mass parameters for the third
generation and the Higgs mass parameters are involved
owing to the Yukawa couplings:

M2
L̃3

= M2
L̃3,U

+
80f3 + 123f2 − 103/5f1

122
− 3

5
S′(t)

+
3∆Σt − 18∆Σb + 35∆Στ

122
, (87)

M2
Ẽ3

= M2
Ẽ3,U

+
80f3 − 60f2 + 16f1

61
+

6
5
S′(t)

+
3∆Σt − 18∆Σb + 35∆Στ

61
, (88)

M2
Q̃3

= M2
Q̃3,U

+
128f3 + 87f2 − 11f1

122
+

1
5
S′(t)



G.A. Blair et al.: The reconstruction of supersymmetric theories at high energy scales 279

+
17∆Σt + 20∆Σb − 5∆Στ

122
, (89)

M2
Ũ3

= M2
Ũ3,U

+
72f3 − 54f2 + 72/5f1

61
− 4

5
S′(t)

+
21∆Σt − 4∆Σb + ∆Στ

61
, (90)

M2
D̃3

= M2
D̃3,U

+
56f3 − 42f2 + 56/5f1

61
+

2
5
S′(t)

+
−4∆Σt + 24∆Σb − 6∆Στ

61
, (91)

M2
H1

= M2
H1,U +

−240f3 − 3f2 − 57/5f1

122
− 3

5
S′(t)

+
−9∆Σt + 54∆Σb + 17∆Στ

122
, (92)

M2
H2

= M2
H2,U +

−272f3 + 21f2 − 89/5f1

122
+

3
5
S′(t)

+
63∆Σt − 12∆Σb + 3∆Στ

122
, (93)

with

∆Σk = Σk(t) − Σk,U , (94)

Σt = M2
Q̃3

+ M2
Ũ3

+ M2
H2

, (95)

Σb = M2
Q̃3

+ M2
D̃3

+ M2
H1, (96)

Στ = M2
L̃3

+ M2
Ẽ3

+ M2
H1. (97)

The explicit solution for Σk reads

Σk = ξk + A2
k + 2ekAk

−A2
k,U/Yk,U − Σk,U/Yk,U + akk

∫
ukξk

1/Yk,U + akk

∫
uk

, (98)

with

ξt = Ẽt + 2F̃t
Ab,U

∫
ub − ∫ ubeb

1/Yb,U + 6
∫

ub
(99)

+ 7
(

Ab,U

∫
ub − ∫ ubeb

1/Yb,U + 6
∫

ub

)2

− (Σb,U + A2
b,U )
∫

ub − 2Ab,U

∫
ubeb +

∫
ubξb

1/Yb,U + 6
∫

ub
,

ξb = Ẽb (100)

+ 2F̃b

[
At,U

∫
ut − ∫ utet

1/Yt,U + 6
∫

ut
+

Aτ,U

∫
uτ − ∫ uτeτ

1/Yτ,U + 4
∫

uτ

]

+ 7
(

At,U

∫
ut − ∫ utet

1/Yt,U + 6
∫

ut

)2

+ 5
(

Aτ,U

∫
uτ − ∫ uτeτ

1/Yτ,U + 4
∫

uτ

)2

+ 2
(

At,U

∫
ut − ∫ utet

1/Yt,U + 6
∫

ut

)(
Aτ,U

∫
uτ − ∫ uτeτ

1/Yτ,U + 4
∫

uτ

)

− (Σt,U + A2
t,U )
∫

ut − 2At,U

∫
utet +

∫
utξt

1/Yt,U + 6
∫

ut

− (Στ,U + A2
τ,U )
∫

uτ − 2Aτ,U

∫
uτeτ +

∫
uτξτ

1/Yτ,U + 4
∫

uτ
,

ξτ = Ẽτ + 6F̃τ
Ab,U

∫
ub − ∫ ubeb

1/Yb,U + 6
∫

ub
(101)

+ 27
(

Ab,U

∫
ub − ∫ ubeb

1/Yb,U + 6
∫

ub

)2

− 3
(Σb,U + A2

b,U )
∫

ub − 2Ab,U

∫
ubeb +

∫
ubξb

1/Yb,U + 6
∫

ub
,

Ẽk = t2

(
3∑

i=1

ckiαiMi,U

)2

+ 2t

3∑
i=1

ckiαiM
2
i,U (102)

− t2
3∑

i=1

ckibiα
2
i M

2
i,U .

Finally we express tZ = log(M2
U/m2

Z) and αU in terms of
observables at the electroweak scale, using (66), by

tZ =
4π

(b1 − b2)α(mZ)

(
3 cos2 ϑW

5
− sin2 ϑW

)
, (103)

and similarly for the gauge coupling at the GUT scale:

αU =
5α(mZ)

3
b1 − b2

5
3
b1 sin2 ΘW − b2 cos2 ΘW

. (104)

B.2 Universal SUGRA boundary conditions at the
GUT scale including right-handed neutrinos

Those formulae are noted in this subsection which are
changed compared to the previous section in the range
between MU and MνR . Below MνR , these quantities have
the same form as given above. In addition we note also
the equations related to the right-handed neutrinos:

ut =
Et

(1 + 6Yb,U

∫ t

0 ub)1/6(1 + 4Yν,U

∫ t

0 uν)1/4
, (105)

uτ =
Eτ

(1 + 6Yb,U

∫ t

0 ub)1/2(1 + 4Yν,U

∫ t

0 uν)1/4
, (106)

uν =
Eν

(1 + 6Yt,U

∫ t

0 ut)1/2(1 + 4Yτ,U

∫ t

0 uτ )1/4
, (107)

et = F̃t +
Ab,U

∫
ub − ∫ ubeb

1/Yb,U + 6
∫

ub
+

Aν,U

∫
uν − ∫ uνeν

1/Yν,U + 4
∫

uν
,

(108)

eτ = F̃τ + 3
Ab,U

∫
ub − ∫ ubeb

1/Yb,U + 6
∫

ub
+

Aν,U

∫
uν − ∫ uνeν

1/Yν,U + 4
∫

uν
,

(109)

eν = F̃ν + 3
At,U

∫
ut − ∫ utet

1/Yt,U + 6
∫

ut
+

Aτ,U

∫
uτ − ∫ uτeτ

1/Yτ,U + 4
∫

uτ
.

(110)

ξt = Ẽt

+ 2F̃t

(
Ab,U

∫
ub − ∫ ubeb

1/Yb,U + 6
∫

ub
+

Aν,U

∫
uν − ∫ uνeν

1/Yν,U + 4
∫

uν

)
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+ 7
(

Ab,U

∫
ub − ∫ ubeb

1/Yb,U + 6
∫

ub

)2

+ 5
(

Aν,U

∫
uν − ∫ uνeν

1/Yν,U + 4
∫

uν

)2

+ 2
(

Ab,U

∫
ub − ∫ ubeb

1/Yb,U + 6
∫

ub

)(
Aν,U

∫
uν − ∫ uνeν

1/Yν,U + 4
∫

uν

)

− (Σb,U + A2
b,U )
∫

ub − 2Ab,U

∫
ubeb +

∫
ubξb

1/Yb,U + 6
∫

ub
,

− (Σν,U + A2
ν,U )
∫

uν − 2Aν,U

∫
uνeν +

∫
uνξν

1/Yν,U + 4
∫

uν
,

(111)

ξτ = Ẽτ

+ 2F̃τ

(
3
Ab,U

∫
ub − ∫ ubeb

1/Yb,U + 6
∫

ub
+

Aν,U

∫
uν − ∫ uνeν

1/Yν,U + 4
∫

uν

)

+ 27
(

Ab,U

∫
ub − ∫ ubeb

1/Yb,U + 6
∫

ub

)2

+ 5
(

Aν,U

∫
uν − ∫ uνeν

1/Yν,U + 4
∫

uν

)2

+ 6
(

Ab,U

∫
ub − ∫ ubeb

1/Yb,U + 6
∫

ub

)(
Aν,U

∫
uν − ∫ uνeν

1/Yν,U + 4
∫

uν

)

− 3
(Σb,U + A2

b,U )
∫

ub − 2Ab,U

∫
ubeb +

∫
ubξb

1/Yb,U + 6
∫

ub

− (Σν,U + A2
ν,U )
∫

uν − 2Aν,U

∫
uνeν +

∫
uνξν

1/Yν,U + 4
∫

uν
,

(112)

ξν = Ẽν

+ 2F̃ν

(
3
At,U

∫
ut − ∫ utet

1/Yt,U + 6
∫

ut
+

Aτ,U

∫
uτ − ∫ uτeτ

1/Yτ,U + 4
∫

uτ

)

+ 27
(

At,U

∫
ut − ∫ utet

1/Yt,U + 6
∫

ut

)2

+ 5
(

Aτ,U

∫
uτ − ∫ uτeτ

1/Yτ,U + 4
∫

uτ

)2

+ 6
(

At,U

∫
ut − ∫ utet

1/Yt,U + 6
∫

ut

)(
Aτ,U

∫
uτ − ∫ uτeτ

1/Yτ,U + 4
∫

uτ

)

− 3
(Σt,U + A2

t,U )
∫

ut − 2At,U

∫
utet +

∫
utξt

1/Yt,U + 6
∫

ut

− (Στ,U + A2
τ,U )
∫

uτ − 2Aτ,U

∫
uτeτ +

∫
uτξτ

1/Yτ,U + 4
∫

uτ
;

(113)
Σν = M2

L̃3
+ M2

Ñ3
+ M2

H2
. (114)
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